Данные со статической структурой. Алгоритм быстрой сортировки Хоара. Анализ сложности алгоритма.

Быстрая сортировка (англ. quicksort), часто называемая по имени реализации в стандартной библиотеке языка Си — широко известный алгоритм сортировки, разработанный английским информатиком Чарльзом Хоаром в МГУ в 1960 году. Один из быстрых известных универсальных алгоритмов сортировки массивов (в среднем O(n log n) обменов при упорядочении n элементов), хотя и имеющий ряд недостатков.
Краткое описание алгоритма 
·         выбрать элемент, называемый опорным.
·         сравнить все остальные элементы с опорным, на основании сравнения разбить множество на три — «меньшие опорного», «равные» и «большие», расположить их в порядке меньшие-равные-большие.
·         повторить рекурсивно для «меньших» и «больших».
Примечание: на практике обычно разделяют сортируемое множество не на три, а на две части: например, «меньшие опорного» и «равные и большие». Такой подход в общем случае оказывается эффективнее, так как для осуществления такого разделения достаточно одного прохода по сортируемому множеству и однократного обмена лишь некоторых выбранных элементов.
QuickSort является существенно улучшенным вариантом алгоритма сортировки с помощью прямого обмена (его варианты известны как «Пузырьковая сортировка» и «Шейкерная сортировка»), известного, в том числе, своей низкой эффективностью. Принципиальное отличие состоит в том, что после каждого прохода элементы делятся на две независимые группы. Любопытный факт: улучшение самого неэффективного прямого метода сортировки дало в результате эффективный улучшенный метод.
·         Лучший случай. Для этого алгоритма самый лучший случай — если в каждой итерации каждый из подмассивов делился бы на два равных по величине массива. В результате количество сравнений, делаемых быстрой сортировкой, было бы равно значению рекурсивного выражения CN = 2CN/2+N, что в явном выражении дает примерно N lg N сравнений. Это дало бы наименьшее время сортировки.
·         Среднее. Даёт в среднем O(n log n) обменов при упорядочении n элементов. В реальности именно такая ситуация обычно имеет место при случайном порядке элементов и выборе опорного элемента из середины массива либо случайно.
На практике (в случае, когда обмены являются более затратной операцией, чем сравнения) быстрая сортировка значительно быстрее, чем другие алгоритмы с оценкой O(n lg n), по причине того, что внутренний цикл алгоритма может быть эффективно реализован почти на любой архитектуре. 2CN/2 покрывает расходы по сортировке двух полученных подмассивов; N — это стоимость обработки каждого элемента, используя один или другой указатель. Известно также, что примерное значение этого выражения равно CN = N lg N.
·         Худший случай. Худшим случаем, очевидно, будет такой, при котором на каждом этапе массив будет разделяться на вырожденный подмассив из одного опорного элемента и на подмассив из всех остальных элементов. Такое может произойти, если в качестве опорного на каждом этапе будет выбран элемент либо наименьший, либо наибольший из всех обрабатываемых.
Худший случай даёт O(n²) обменов. Но количество обменов и, соответственно, время работы — это не самый большой его недостаток. Хуже то, что в таком случае глубина рекурсии при выполнении алгоритма достигнет n, что будет означать n-кратное сохранение адреса возврата и локальных переменных процедуры разделения массивов. Для больших значений n худший случай может привести к исчерпанию памяти во время работы алгоритма. Впрочем, на большинстве реальных данных можно найти решения, которые минимизируют вероятность того, что понадобится квадратичное время.
·          
·         //алгоритм на языке java и с//с++
·           public static void qSort(int[] A, int low, int high) {
·               int i = low;               
·               int j = high;
·               int x = A[(low+high)/2];  // x - опорный элемент посредине между low и high
·               do {
·                   while(A[i] < x) ++i;  // поиск элемента для переноса в старшую часть
·                   while(A[j] > x) --j;  // поиск элемента для переноса в младшую часть
·                   if(i <= j){          
·                       // обмен элементов местами:
·                       int temp = A[i];
·                       A[i] = A[j];
·                       A[j] = temp;
·                       // переход к следующим элементам:
·                       i++; j--;
·                   }
·               } while(i < j);
·               if(low < j) qSort(A, low, j);
·               if(i < high) qSort(A, i, high);
·           }



Анализ сложности – Королев-Миков страницы 122!!!